alexa Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Mller AM, Mehrkens A, Schfer DJ, Jaquiery C, Gven S,

Abstract Share this page

Abstract Grafts generated by cultivation of progenitor cells from the stromal vascular fraction of human adipose tissue have been proven to have osteogenic and vasculogenic properties in vivo. However, in vitro manufacture of such implants is challenged by complex, impractical and expensive processes, and requires implantation in a separate surgery. This study investigates the feasibility of an intraoperative approach to engineer cell-based bone grafts with tissue harvest, cell isolation, cell seeding onto a scaffold and subsequent implantation within a few hours. Freshly isolated adipose tissue cells from a total of 11 donors, containing variable fractions of mesenchymal and endothelial progenitors, were embedded at different densities in a fibrin hydrogel, which was wrapped around bone substitute materials based on beta-tricalcium phosphate (ChronOS), hydroxyapatite (Engipore), or acellular xenograft (Bio-Oss). The resulting constructs, generated within 3 hours from biopsy harvest, were immediately implanted ectopically in nude mice and analysed after eight weeks. All explants contained blood vessels formed by human endothelial cells, functionally connected to the recipient's vasculature. Human origin cells were also found within osteoid structures, positively immunostained for bone sialoprotein and osteocalcin. However, even with the highest loaded cell densities, no frank bone tissue was detected, independently of the material used. These results provide a proof-of-principle that an intraoperative engineering of autologous cell-based vasculogenic bone substitutes is feasible, but highlight that - in the absence of in vitro commitment--additional cues (e.g., low dose of osteogenic factors or orthotopic environmental conditions) are likely needed to support complete osteoblastic cell differentiation and bone tissue generation.
This article was published in Eur Cell Mater and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords