alexa Toxicity and genotoxicity of nano-SiO2 on human epithelial intestinal HT-29 cell line.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Sergent JA, Paget V, Chevillard S

Abstract Share this page

Abstract Silica mesoporous nanoparticles have been recently selected for a wide range of applications from electronics to medicine due to their intrinsic properties. Among medical applications, drug delivery using SiO(2) nanoparticles by oral route is under study. Major benefits are expected including higher specificity and sensitivity together with side effect reduction. Since literature shows that very complex and unexpected interactions could occur between nanomaterials and biological systems, one critical issue is to control the nanoparticle cytotoxicity/genotoxicity for normal tissues and specially stomach and intestine when oral route is considered. The aim of the work is to study the cytotoxicity and genotoxicity of SiO(2) nanoparticles on HT29 human intestine cell line, using conventional and innovative methodologies, for measuring cell viability and proliferation, global metabolism, genotoxicity, and nanoparticles uptake. Core-dye doped SiO(2) nanoparticles of 25 and 100 nm were specifically synthesized to track nanoparticles incorporation by confocal and video microscopy. Besides conventional approaches (sulforhodamine B, flow cytometry, and γ-H2Ax foci), we have performed a real-time monitoring of cell proliferation using an impedance-based system which ensure no interference between measures and nanoparticles physicochemical characteristics. Overall, our results showed that SiO(2)-25nm and SiO(2)-100nm induced a rather limited cytotoxic and genotoxic effects on HT-29 cells after a 24 h exposure. However, regarding cell viability and genotoxicity, inverse dose-dependent relationships were observed for SiO(2)-100nm nanoparticles. In conclusion, it seems that the higher the dose of SiO(2)-100nm, the lower the cytotoxic/genotoxic effects, data that well illustrate the complexity in identifying and understanding the hazards of nanoparticles for human health. This article was published in Ann Occup Hyg and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords