alexa Toxin composition variations in one isolate of the dinoflagellate Alexandrium fundyense.
Microbiology

Microbiology

Journal of Antivirals & Antiretrovirals

Author(s): Anderson DM, Kulis DM, Sullivan JJ, Hall S

Abstract Share this page

Abstract A commonly accepted paradigm in the study of saxitoxin-producing dinoflagellates is that the total concentration of all toxins (toxin content) in one isolate can vary with growth conditions, but that the relative abundance of each toxin (toxin composition) does not change. We demonstrate here that dramatic changes in toxin composition do occur in one isolate of Alexandrium fundyense. In nitrogen- and phosphorus-limited semi-continuous cultures, toxin composition varied systematically with growth rate. When cells grew slowly under severe nutrient limitation, toxin composition was dominated by one or at most two toxin epimer pairs; as nutrient stresses eased at higher growth rates, the toxin profiles became more heterogeneous. Steady-state, sustained nitrogen limitation favored the production of toxins C 1,2 and GTX I,IV, whereas phosphorus limitation produced cells with high relative abundance of GTX II,III. STX reached its highest relative abundance when growth was most rapid. The lack of observed compositional changes in most past studies is probably not due to inherent differences in toxin biosynthetic pathways between the strains of Alexandrium examined, but rather to differences in the physiology of cells grown under different culturing modes (batch vs semi-continuous), methods of toxin analysis, and dominant toxins in the particular isolates examined.
This article was published in Toxicon and referenced in Journal of Antivirals & Antiretrovirals

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords