alexa Tracking individual intracellular proteins using quantum dots.
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Courty S, Dahan M

Abstract Share this page

Abstract Single-molecule detection of quantum dot (QD)-tagged proteins located in the cytoplasm or the nucleus presents a significant challenge in live-cell imaging. First, QDs must enter the cell cytoplasm and reach their molecular target but still preserve cell integrity. Second, the fluorescence of individual QDs must be detected in a noisy environment and distinguished from the autofluorescence of intracellular compartments and organelles. Finally, molecular motion in the cytosol is likely to be three-dimensional, compared to two-dimensional diffusion in the membrane. In this protocol, streptavidin-coated QDs (QD-SAVs) are coupled with biotinylated proteins (ideally in a 1:1 molar ratio) in hypertonic medium. The coupled reaction product (QD-P) is then added to live cells (e.g., mammalian HeLa cells) using a cell-loading technique based on the osmotic lysis of pinocytic vesicles. The osmotic lysis of pinocytic vesicles in hypotonic solution does not alter the viability of cultured cells and does not result in lysosomal enzyme release. By comparison with other internalization techniques, such as microinjection, this method is much simpler and more reproducible because all of the cells are simultaneously loaded under the same conditions. It can provide quantitative information on the movement of intracellular biomolecules, enhancing our understanding of complex biological processes such as signal transduction, cell division, or motility. This article was published in Cold Spring Harb Protoc and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords