alexa Transcatheter implantation of homologous "off-the-shelf" tissue-engineered heart valves with self-repair capacity: long-term functionality and rapid in vivo remodeling in sheep.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Tissue Science & Engineering

Author(s): DriessenMol A, Emmert MY, Dijkman PE, Frese L, Sanders B,

Abstract Share this page

Abstract OBJECTIVES: This study sought to evaluate long-term in vivo functionality, host cell repopulation, and remodeling of "off-the-shelf" tissue engineered transcatheter homologous heart valves. BACKGROUND: Transcatheter valve implantation has emerged as a valid alternative to conventional surgery, in particular for elderly high-risk patients. However, currently used bioprosthetic transcatheter valves are prone to progressive dysfunctional degeneration, limiting their use in younger patients. To overcome these limitations, the concept of tissue engineered heart valves with self-repair capacity has been introduced as next-generation technology. METHODS: In vivo functionality, host cell repopulation, and matrix remodeling of homologous transcatheter tissue-engineered heart valves (TEHVs) was evaluated up to 24 weeks as pulmonary valve replacements (transapical access) in sheep (n = 12). As a control, tissue composition and structure were analyzed in identical not implanted TEHVs (n = 5). RESULTS: Transcatheter implantation was successful in all animals. Valve functionality was excellent displaying sufficient leaflet motion and coaptation with only minor paravalvular leakage in some animals. Mild central regurgitation was detected after 8 weeks, increasing to moderate after 24 weeks, correlating to a compromised leaflet coaptation. Mean and peak transvalvular pressure gradients were 4.4 ± 1.6 mm Hg and 9.7 ± 3.0 mm Hg, respectively. Significant matrix remodeling was observed in the entire valve and corresponded with the rate of host cell repopulation. CONCLUSIONS: For the first time, the feasibility and long-term functionality of transcatheter-based homologous off-the-shelf tissue engineered heart valves are demonstrated in a relevant pre-clinical model. Such engineered heart valves may represent an interesting alternative to current prostheses because of their rapid cellular repopulation, tissue remodeling, and therewith self-repair capacity. The concept of homologous off-the-shelf tissue engineered heart valves may therefore substantially simplify previous tissue engineering concepts toward clinical translation. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved. This article was published in J Am Coll Cardiol and referenced in Journal of Tissue Science & Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th Annual Conference on Stem Cell and Regenerative Medicine
    Sep 25-26, 2017 Berlin, Germany
  • 10th World Congress on Stem Cell and Biobanking
    October 23-24, 2017 Osaka, Japan

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version