alexa Transferrin receptor-dependent iron uptake is responsible for doxorubicin-mediated apoptosis in endothelial cells: role of oxidant-induced iron signaling in apoptosis.
Oncology

Oncology

Chemotherapy: Open Access

Author(s): Kotamraju S, Chitambar CR, Kalivendi SV, Joseph J, Kalyanaraman B

Abstract Share this page

Abstract In the past, investigators have successfully used iron chelators to mitigate the cardiotoxicity of doxorubicin (DOX), a widely used anticancer drug that induces reactive oxygen species (ROS), oxidative damage, and apoptosis. Although intracellular iron plays a critical role in initiating DOX-induced apoptosis, the molecular mechanism(s) that link iron, ROS, and apoptosis are still unknown. In this study, we demonstrate that apoptosis results from the exposure of bovine aortic endothelial cells to DOX and that the apoptotic cell death is accompanied by a significant increase in cellular iron ((55)Fe) uptake and activation of iron regulatory protein-1. Furthermore, DOX-induced iron uptake was shown to be mediated by the transferrin receptor (TfR)-dependent mechanism. Treatment with the anti-TfR antibody (IgA class) dramatically inhibited DOX-induced apoptosis, iron uptake, and intracellular oxidant formation as measured by fluorescence using dichlorodihydrofluorescein. Treatment with cell-permeable iron chelators and ROS scavengers inhibited DOX-induced cellular (55)Fe uptake, ROS formation, and apoptosis. Based on these findings, we conclude that DOX-induced iron signaling is regulated by the cell surface TfR expression, intracellular oxidant levels, and iron regulatory proteins. The implications of TfR-dependent iron transport in oxidant-induced apoptosis in endothelial cells are discussed. This article was published in J Biol Chem and referenced in Chemotherapy: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords