alexa Transformations of halogenated aromatic aldehydes by metabolically stable anaerobic enrichment cultures.
Environmental Sciences

Environmental Sciences

Hydrology: Current Research

Author(s): Neilson AH, Allard AS, Hynning PA, Remberger M

Abstract Share this page

Abstract Metabolically stable enrichment cultures of anaerobic bacteria obtained by elective enrichment of sediment samples from the Baltic Sea and Gulf of Bothnia have been used to study the oxidation and reduction of the aldehyde group of various halogenated aromatic aldehydes. During the transformation of 5- and 6-chlorovanillin, 6-bromovanillin, 3-chloro-4-hydroxybenzaldehyde, 3,5-dichloro-4-hydroxybenzaldehyde, and 3,5-dibromo-4-hydroxybenzaldehyde, it was shown that synthesis of the corresponding carboxylic acids, which were the principal metabolites, was invariably accompanied by partial reduction of the aldehyde to a hydroxymethyl group in yields of between 3 and 30\%. Complete reduction to a methyl group was observed with some of the halogenated vanillins, but to an extremely limited extent with the halogenated 4-hydroxybenzaldehydes. One consortium produced both the hydroxymethyl and methyl compounds from both 5- and 6-chlorovanillin: it was therefore assumed that the methyl compound was the ultimate reduction product. On the basis of the kinetics of formation of the metabolites, it was concluded that the oxidation and reduction reactions were mechanistically related. In addition to these oxidations and reductions, dehalogenation was observed with one of the consortia. In contrast to the transformations of 5- and 6-chlorovanillin, which produced chlorinated methylcatechols, the corresponding compounds were not observed with 5- and 6-bromovanillin: the former was debrominated, forming 4-methylcatechol, whereas the latter produced 6-bromovanillyl alcohol without demethylation. Similarly, although 3-chloro-4-hydroxybenzaldehyde formed the chlorinated carboxylic acid and the benzyl alcohol, the 3-bromo compound was debrominated with formation of 4-hydroxybenzoic acid and, ultimately, phenol. On prolonged incubation, the halogenated carboxylic acids were generally decarboxylated, so that the final products from these substrates were halogenated catechols or phenols. Reductive processes of the type revealed in this study might therefore plausibly occur in the environment during anaerobic transformation of halogenated aromatic aldehydes containing hydroxyl and/or methoxyl groups.
This article was published in Appl Environ Microbiol and referenced in Hydrology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords