alexa Transgenic rat hearts overexpressing SERCA2a show improved contractility under baseline conditions and pressure overload.
Cardiology

Cardiology

Journal of Hypertension: Open Access

Author(s): Mller OJ, Lange M, Rattunde H, Lorenzen HP, Mller M,

Abstract Share this page

Abstract OBJECTIVE: The activity of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) is reduced in the failing myocardium. Therefore, transfer of SERCA2a cDNA is considered as a therapeutical approach. The aim of this study was analysis of the long-term effect of SERCA2a overexpression in normal as well as pressure overload challenged myocardium of transgenic rats. METHODS: Independent transgenic rat lines were established expressing the rat SERCA2a cDNA specifically in the myocardium resulting in increased SERCA2a protein levels by 30-70\%. Simultaneous measurements of isometric contraction and calcium transients were carried out in right ventricular papillary muscle preparations. Hemodynamic parameters were measured in hearts of unchallenged rats as well as 10 weeks after pressure overload induced by abdominal aortic banding. RESULTS: Analysis of calcium handling and contractile parameters in isolated right ventricular papillary muscles revealed significant shortening of intracellular calcium transients and half maximal relaxation times (RT(50)). Assessing myocardial contractility in working heart preparations, both transgenic rat lines revealed elevated left ventricular pressure, improved systolic and diastolic parameters, attenuated negative force-frequency relation, and a dose-dependent beta-adrenergic effect. Aortic banding resulted in reduction of left ventricular pressure and worsening of contraction and relaxation parameters with no differences in mortality in both transgenic (+dP/dt 3084+/-96 vs. 3938+/-250 mmHg/s; RT(50) 47.0+/-1.2 vs. 36.7+/-1.4 ms) and wild-type rats (+dP/dt 2695+/-86 vs. 3297+/-122 mmHg/s; RT(50) 53.0+/-1.6 vs. 44.1+/-1.4). SERCA2a overexpressing hearts revealed improved hemodynamic parameters compared to wild-type controls. Acceleration of isovolumetric relaxation characterized by the index Tau was directly correlated to SERCA2a protein concentrations. CONCLUSION: Overexpression of SERCA2a protein results in a positive inotropic effect under baseline conditions remaining preserved under pressure overload without affecting mortality. Therefore therapeutic transfer of SERCA2a may become a potential approach for gene therapy of congestive heart failure. Moreover, transgenic SERCA2a rats will be useful for studies of long-term SERCA2a overexpression in further cardiovascular disease models.
This article was published in Cardiovasc Res and referenced in Journal of Hypertension: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

  • Gerald J Prud`homme
    Gamma-aminobutyric acid (GABA) treatment blocks inflammatory pathways and promotes survival and proliferation of pancreatic beta cells
    PPT Version | PDF Version
  • Niru Khatiwada
    Treatment adherence among patients undergoing hemodialysis
    PPT Version | PDF Version
  • Anne Stinn
    Deciphering the crystal structure of NF-CU - a novel bispecific antibody for the treatment of acute myeloid leukemia
    PPT Version | PDF Version
  • Ines Bouaziz
    Water treatment containing organic compounds by coupling adsorption and electrochemical degradation at BDD anode: Sawdust adsorption performance for the treatment of dilute phenol solutions
    PPT Version | PDF Version
  • Donald silverberg
    Is correction of iron deficiency a new addition to the treatment of heart failure?
    PPT Version | PDF Version
  • Ahmed Zeidan
    Effects of intravenous iron in chronic kidney disease and heart failure
    PPT Version | PDF Version
  • Franco Vicariotto
    Probiotics in the treatment of vulvovaginal candidiasis and bacterial vaginosis
    PPT Version | PDF Version
  • Hongdong Huang
    CD4+CD25+ Treg cells may be useful for the treatment of IgAN
    PPT Version | PDF Version
  • Rajashree Khot
    Vitamin D deficiency in diabetic peripheral neuropathy: Prevalence, repletion and treatment outcomes
    PPT Version | PDF Version
  • Arshad Islam
    Nanosystems formed by amphiphilic antimony(v) complexes incorporating amphotericin B for the treatment leishmaniasis
    PPT Version | PDF Version
  • Emanuele Corongiu
    Role of percutaneous tibial nerve stimulation in the treatment of neurogenic overactive bladder syndrome.
    PPT Version | PDF Version
  • Wendy peters
    A non-replicating Ad5 vaccine for treatment of HSV-2
    PPT Version | PDF Version
  • Eran Maman
    New treatment modality for massive Rotator Cuff tears
    PDF Version
  • Isac da Silva Ferreira Lima
    Factors related with early treatment for malaria in the Brazilian Amazon: A multivariable approach using a ten-year population-based malaria surveillance database
    PPT Version | PDF Version
  • Yosef Yarden
    Classically, the 3’untranslated region (3’UTR) is that region in eukaryotic protein-coding genes from the translation termination codon to the polyA signal. It is transcribed as an integral part of the mRNA encoded by the gene. However, there exists another kind of RNA, which consists of the 3’UTR alone, without all other elements in mRNA such as 5’UTR and coding region. The importance of independent 3’UTR RNA (referred as I3’UTR) was prompted by results of artificially introducing such RNA species into malignant mammalian cells. Since 1991, we found that the middle part of the 3’UTR of the human nuclear factor for interleukin-6 (NF-IL6) or C/EBP gene exerted tumor suppression effect in vivo. Our subsequent studies showed that transfection of C/EBP 3’UTR led to down-regulation of several genes favorable for malignancy and to up-regulation of some genes favorable for phenotypic reversion. Also, it was shown that the sequences near the termini of the C/EBP 3’UTR were important for its tumor suppression activity. Then, the C/EBP 3’UTR was found to directly inhibit the phosphorylation activity of protein kinase CPKC in SMMC-7721, a hepatocarcinoma cell line. Recently, an AU-rich region in the C/EBP 3’UTR was found also to be responsible for its tumor suppression. Recently we have also found evidence that the independent C/EBP 3’UTR RNA is actually exists in human tissues, such as fetal liver and heart, pregnant uterus, senescent fibroblasts etc. Through 1990’s to 2000’s, world scientists found several 3’UTR RNAs that functioned as artificial independent RNAs in cancer cells and resulted in tumor suppression. Interestingly, majority of genes for these RNAs have promoter-like structures in their 3’UTR regions, although the existence of their transcribed products as independent 3’UTR RNAs is still to be confirmed. Our studies indicate that the independent 3’UTR RNA is a novel non-coding RNA species whose function should be the regulation not of the expression of their original mRNA, but of some essential life activities of the cell as a whole.
    PPT Version | PDF Version

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords