alexa Transient receptor potential canonical channel 1 impacts on mechanosignaling during cell migration.
Genetics & Molecular Biology

Genetics & Molecular Biology

Gene Technology

Author(s): Fabian A, Bertrand J, Lindemann O, Pap T, Schwab A

Abstract Share this page

Abstract Cell migration is crucial for many important physiological and pathophysiological processes ranging from embryogenesis to tumor metastasis. It requires the coordination of mechanical forces generated in different regions of the migrating cell. It has been proposed that stretch-activated, Ca(2+)-permeable channels are involved in mechanosignaling during cell migration. To date, the molecular identity of these channels is only poorly defined. Here, we investigated the contribution of TRPC1 channels to mechanosignaling during cell migration. We used primary cultures of synovial fibroblasts from TRPC1(-/-) mice and the wild-type littermates or Madin-Darby canine kidney (MDCK-F) cells with increased or decreased TRPC1 expression. TRPC1(-/-) fibroblasts have the same migratory phenotype as siTRPC1 MDCK-F cells, with a largely increased projected cell area and impaired directionality. Measurements of the intracellular Ca(2+) concentration ([Ca(2+)](i)) were combined with time-lapse video microscopic cell migration experiments. Cells were seeded on elastic silicone membranes. Uniaxial stretch elicits a graded elevation of the [Ca(2+)](i) in TRPC1-expressing cells. In contrast, TRPC1(-/-) fibroblasts or siTRPC1 MDCK-F cells do not react to 0.4 \%, and the response to 4 \% stretch is attenuated. Similarly, siTRPC1 MDCK-F cells do not alter their direction of migration upon mechanical stimulation, which contrasts the behavior of TRPC1-overexpressing cells which turn into the direction of stretch. Impaired mechanosignaling in siTRPC1 MDCK-F cells leads to accelerated lamellipodial protrusions. Finally, artificially decreasing membrane tension with the detergent deoxycholate impairs the migration of TRPC1-overexpressing cells, but not of siTRPC1 cells. Taken together, our findings indicate that TRPC1 channels are linked to mechanosignaling during cell migration. This article was published in Pflugers Arch and referenced in Gene Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords