alexa Transition states of Plasmodium falciparum and human orotate phosphoribosyltransferases.
Chemical Engineering

Chemical Engineering

Journal of Bioprocessing & Biotechniques

Author(s): Zhang Y, Luo M, Schramm VL, Zhang Y, Luo M, Schramm VL

Abstract Share this page

Abstract Orotate phosphoribosyltransferases (OPRT) catalyze the formation of orotidine 5'-monophosphate (OMP) from alpha-D-phosphoribosylpyrophosphate (PRPP) and orotate, an essential step in the de novo biosynthesis of pyrimidines. Pyrimidine de novo biosynthesis is required in Plasmodium falciparum , and thus OPRT of the parasite (PfOPRT) is a target for antimalarial drugs. De novo biosynthesis of pyrimidines is also a feature of rapidly proliferating cancer cells. Human OPRT (HsOPRT) is therefore a target for neoplastic and autoimmune diseases. One approach to the inhibition of OPRTs is through analogues that mimic the transition states of PfOPRT and HsOPRT. The transition state structures of these OPRTs were analyzed by kinetic isotope effects (KIEs), substrate specificity, and computational chemistry. With phosphonoacetic acid (PA), an analogue of pyrophosphate, the intrinsic KIEs of [1'-(14)C], [1, 3-(15)N(2)], [3-(15)N], [1'-(3)H], [2'-(3)H], [4'-(3)H], and [5'-(3)H(2)] are 1.034, 1.028, 0.997, 1.261, 1.116, 0.974, and 1.013 for PfOPRT and 1.035, 1.025, 0.993, 1.199, 1.129, 0.962, and 1.019 for HsOPRT, respectively. Transition state structures of PfOPRT and HsOPRT were determined computationally by matching the calculated and intrinsic KIEs. The enzymes form late associative D(N)*A(N)(double dagger) transition states with complete orotate loss and partially associative nucleophile. The C1'-O(PA) distances are approximately 2.1 A at these transition states. The modest [1'-(14)C] KIEs and large [1'-(3)H] KIEs are characteristic of D(N)*A(N)(double dagger) transition states. The large [2'-(3)H] KIEs indicate a ribosyl 2'-C-endo conformation at the transition states. p-Nitrophenyl beta-D-ribose 5'-phosphate is a poor substrate of PfOPRT and HsOPRT but is a nanomolar inhibitor, supporting a reaction coordinate with strong leaving group activation.
This article was published in J Am Chem Soc and referenced in Journal of Bioprocessing & Biotechniques

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 17th Euro Biotechnology Congress
    September 25-27, 2017 Berlin, Germany
  • 2nd World Biotechnology Congress
    December 04-06, 2017 Sao Paulo, Brazil

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version