alexa Translational control plays a prominent role in the hepatocytic differentiation of HepaRG liver progenitor cells.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Molecular and Genetic Medicine

Author(s): Parent R, Beretta L

Abstract Share this page

Abstract BACKGROUND: We investigated the molecular events associated with the differentiation of liver progenitor cells into functional and polarized hepatocytes, using human HepaRG cells that display potent hepatocytic differentiation-inducible properties and share some features with liver progenitor cells. RESULTS: Profiling of total and of polysome-bound transcripts isolated from HepaRG cells undergoing hepatocytic differentiation was performed. A group of 3,071 probe sets was reproducibly regulated by at least 2-fold in total or in polysome-bound RNA populations, upon differentiation. The fold changes in the total and the polysome-bound RNA populations for these 3,071 probe sets were poorly correlated (R = 0.38). Moreover, while the majority of the regulated polysome-bound RNA probe sets were up-regulated upon differentiation, the majority of the regulated probe sets selected from the total RNA population was down-regulated. Genes translationally up-regulated were associated with cell cycle inhibition, increased susceptibility to apoptosis and innate immunity. In contrast, genes transcriptionally up-regulated during differentiation corresponded in the majority to liver-enriched transcripts involved in lipid homeostasis and drug metabolism. Finally, several epithelial and hepato-specific transcripts were strongly induced in the total RNA population but were translationally repressed. CONCLUSION: Translational regulation is the main genomic event associated with hepatocytic differentiation of liver progenitor cells in vitro and targets genes critical for moderating hepatocellular growth, cell death and susceptibility to pathogens. Transcriptional regulation targets specifically liver-enriched transcripts vital for establishing normal hepatic energy homeostasis, cell morphology and polarization. The hepatocytic differentiation is also accompanied by a reduction of the transcript content complexity.
This article was published in Genome Biol and referenced in Journal of Molecular and Genetic Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version