alexa Transmembrane topology prediction methods: a re-assessment and improvement by a consensus method using a dataset of experimentally-characterized transmembrane topologies.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Ikeda M, Arai M, Lao DM, Shimizu T

Abstract Share this page

Abstract We selected 10 transmembrane (TM) prediction methods (KKD, TMpred, TopPred II, DAS, TMAP, MEMSAT 2, SOSUI, PRED-TMR2, TMHMM 2.0 and HMMTOP 2.0) and re-assessed its prediction performance using a reliable dataset with 122 entries of experimentally-characterized TM topologies. Then, we improved prediction performance by a consensus prediction method. Prediction performance during re-assessment and consensus prediction were based on four attributes: (i) the number of transmembrane segments (TMSs), (ii) the number of TMSs plus TMS-position, (iii) N-tail location and (iv) TM topology. We noted that hidden Markov model-based methods dominate over other methods by individual prediction performance for all four attributes. In addition, all top-performing methods generally were model-based. Among prokaryotic sequences, HMMTOP 2.0 solely topped among other methods with prediction accuracies ranging from 64\% to 86\% across all attributes. However, among eukaryotic sequences, prediction performance for all the attributes was relatively poor compared with prokaryotic ones. On the other hand, our results showed that our proposed consensus prediction method significantly improved prediction performance by, at least, an additional nine percentage points particularly among prokaryotic sequences for the number of TMS (84\%), number of TMS and position (80\%), and TM topology attributes (74\%). Although our consensus prediction method improved also the prediction performance among eukaryotic sequences, the obtained accuracies for all attributes were relatively lower than that obtained by prokaryotic counterparts particularly for TM topology.
This article was published in In Silico Biol and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords