alexa Transplantation of a novel cell line population of umbilical cord blood stem cells ameliorates neurological deficits associated with ischemic brain injury.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Stem Cell Research & Therapy

Author(s): Xiao J, Nan Z, Motooka Y, Low WC

Abstract Share this page

Abstract Umbilical cord blood (UCB) is a rich source of hematopoetic stem cells (HSCs). We have isolated a novel cell line population of stem cells from human UCB that exhibit properties of self-renewal, but do not have cell-surface markers that are typically found on HSCs. Analysis of transcripts revealed that these cells express transcription factors Oct-4, Rex-1, and Sox-2 that are typically expressed by stem cells. We refer to these novel cells as nonhematopoietic umbilical cord blood stem cells (nh-UCBSCs). Previous studies have shown that the intravenous infusion of UCBCs can ameliorate neurological deficits arising from ischemic brain injury. The identity of the cells that mediate this restorative effect, however, has yet to be determined. We postulate that nh-UCBSCs may be a source of the UCB cells that can mediate these effects. To test this hypothesis, we intravenously injected one million human nh-UCBSCs into rats 48 h after transient unilateral middle cerebral artery occlusion. Animals in other experimental groups received either saline injections or injections of RN33b neural stem cells. Animals were tested for neurological function before the infusion of nh-UCBSCs and at various time periods afterwards using a battery of behavioral tests. In limb placement tests, animals treated with nh-UCBSCs exhibited mean scores that were significantly better than animals treated with RN33b neural stem cells or saline. Similarly, in stepping tests, nh-UCBSC-treated animals again exhibited significantly better performance than the other experimental groups of animals. Analysis of infarct volume revealed that ischemic animals treated with nh-UCBSCs exhibited a 50\% reduction in lesion volume in comparison to saline-treated controls. Histological analysis of brain tissue further revealed the presence of cells that stained for human nuclei. Some human nuclei-positive cells were also co-labeled for NeuN, indicating that the transplanted cells expressed markers of a neuronal phenotype. Cells expressing the human nuclei marker within the brain, however, were rather scant, suggesting that the restorative effects of nh-UCBSCs may be mediated by mechanisms other than cell replacement. To test this hypothesis, nh-UCBSCs were directly transplanted into the brain parenchyma after ischemic brain injury. Sprouting of nerve fibers from the nondamaged hemisphere into the ischemically damaged side of the brain was assessed by anterograde tracing using biotinylated dextran amine (BDA). Animals with nh-UCBSC transplants exhibited significantly greater densities of BDA-positive cells in the damaged side of the brain compared to animals with intraparenchymal saline injections. These results suggest that restorative effects observed with nh-UCBSC treatment following ischemic brain injury may be mediated by trophic actions that result in the reorganization of host nerve fiber connections within the injured brain. This article was published in Stem Cells Dev and referenced in Journal of Stem Cell Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords