alexa Transport of the flavonoid chrysin and its conjugated metabolites by the human intestinal cell line Caco-2.
Engineering

Engineering

Journal of Biosensors & Bioelectronics

Author(s): Walle UK, Galijatovic A, Walle T

Abstract Share this page

Abstract Chrysin (5,7-dihydroxyflavone), a natural product present in our daily diet, is a potent inhibitor of drug-metabolizing enzymes. However, its oral bioavailability is not known. This study examined the intestinal epithelial transport of chrysin (20 microM), using the human colonic cell line Caco-2 as a model of human intestinal absorption. The apical to basolateral flux of chrysin, with an apparent permeability coefficient (P(app)) during the first hour of 6.9 +/- 1.6 x 10(-6) cm x sec(-1) (mean +/- SEM), was more than 10-fold higher than for the paracellular transport marker mannitol, 0.42 +/- 0.12 x 10(-6) cm x sec(-1). Interestingly, the reverse, basolateral to apical flux of chrysin, P(app) = 14.1 +/- 1.6 x 10(-6) cm x sec(-1), was about 2-fold higher than the apical to basolateral flux (P < 0.01). In transport studies beyond 1 hr, there was a rapid decline in P(app). This correlated with the appearance of two metabolites, M1 (chrysin glucuronide) and M2 (chrysin sulfate), identified by enzymatic hydrolysis procedures and HPLC. Following apical loading of chrysin, as much as 90\% of M1 + M2 appeared on the apical side, thus indicating clear efflux of the chrysin metabolites. The addition of the anion transport inhibitor MK-571 (50 microM) on the apical side produced a 71\% (P < 0.0001) and 20\% (P < 0.05) inhibition of the efflux of M1 and M2, respectively, suggesting the involvement of the multidrug resistance protein MRP2 pump. Indeed, using specific antibodies, MRP2 was in fact detected by western blotting in Caco-2 plasma membranes, whereas MRP1 was not. These observations suggest that chrysin has favorable membrane transport properties but that its intestinal absorption may be seriously limited by surprisingly efficient glucuronidation and sulfation by the enterocytes and almost quantitative efflux by MRP2 of the metabolites formed.
This article was published in Biochem Pharmacol and referenced in Journal of Biosensors & Bioelectronics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords