alexa Transposable element annotation of the rice genome.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Data Mining in Genomics & Proteomics

Author(s): Juretic N, Bureau TE, Bruskiewich RM

Abstract Share this page

Abstract MOTIVATION: The high content of repetitive sequences in the genomes of many higher eukaryotes renders the task of annotating them computationally intensive. Presently, the only widely accepted method of searching and annotating transposable elements (TEs) in large genomic sequences is the use of the RepeatMasker program, which identifies new copies of TEs by pairwise sequence comparisons with a library of known TEs. Profile hidden Markov models (HMMs) have been used successfully in discovering distant homologs of known proteins in large protein databases, but this approach has only rarely been applied to known model TE families in genomic DNA. RESULTS: We used a combination of computational approaches to annotate the TEs in the finished genome of Oryza sativa ssp. japonica. In this paper, we discuss the strengths and the weaknesses of the annotation methods used. These approaches included: the default configuration of RepeatMasker using cross_match, an implementation of the Smith-Waterman-Gotoh algorithm; RepeatMasker using WU-BLAST for similarity searching; and the HMMER package, used to search for TEs with profile HMMs. All the results were converted into GFF format and post-processed using a set of Perl scripts. RepeatMasker was used in the case of most TE families. The WU-BLAST implementation of RepeatMasker was found to be manifold faster than cross_match with only a slight loss in sensitivity and was thus used to obtain the final set of data. HMMER was used in the annotation of the Mutator-like element (MULE) superfamily and the miniature inverted-repeat transposable element (MITE) polyphyletic group of families, for which large libraries of elements were available and which could be divided into well-defined families. The HMMER search algorithm was extremely slow for models over 1000 bp in length, so MULE families with members over 1000 bp long were processed with RepeatMasker instead. The main disadvantage of HMMER in this application is that, since it was developed with protein sequences in mind, it does not search the negative DNA strand. With the exception of TE families with essentially palindromic sequences, reverse complement models had to be created and run to compensate for this shortcoming. We conclude that a modification of RepeatMasker to incorporate libraries of profile HMMs in searches could improve the ability to detect degenerated copies of TEs. AVAILABILITY: The Perl scripts and TE sequences used in construction of the RepeatMasker library and the profile HMMs are available upon request.
This article was published in Bioinformatics and referenced in Journal of Data Mining in Genomics & Proteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords