alexa Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces
Biomedical Sciences

Biomedical Sciences

Journal of Bioengineering & Biomedical Science

Author(s): Torsten Mller, Annamaria Gerardino, Thomas Schnelle, Stephen G Shirley, Franco Bordoni

Abstract Share this page

We demonstrate that micrometre and sub-micrometre particles can be trapped, aggregated and concentrated in planar quadrupole electrode configurations by positive and negative dielectrophoresis. For particles less than in diameter, concentration is driven by thermal gradients, hydrodynamic effects and sedimentation forces. Liquid streaming is induced by the AC field itself via local heating and results, under special conditions, in vortices which improve the trapping efficiency. Microstructures were fabricated by electron-beam lithography and modified by UV laser ablation. They had typical gap dimensions between 500 nm and several micrometres. The theoretical and experimental results illustrate the basic principles of particle behaviour in ultra-miniaturized field traps filled with aqueous solutions. The smallest single particle that we could stably trap was a Latex bead of 650 nm. The smallest particles which were concentrated in the central part of the field trap were 14 nm in diameter. At high frequencies (in the megahertz range), field strengths up to 56 MV can be applied in the narrow gaps of 500 nm. Further perspectives for microparticle and macromolecular trapping are discussed.

  • To read the full article Visit
  • Open Access
This article was published in Journal of Physics D: Applied Physics and referenced in Journal of Bioengineering & Biomedical Science

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version