alexa Triplex-DNA stabilization by hydralazine and the presence of anti-(triplex DNA) antibodies in patients treated with hydralazine.


Journal of Drug Metabolism & Toxicology

Author(s): Thomas TJ, Seibold JR, Adams LE, Hess EV

Abstract Share this page

Abstract Hydralazine is an antihypertensive drug that elicits andti-nuclear antibodies in patients as an adverse effect. We investigated the ability of hydralazine to promote/stabilize the triplex DNA form of poly(dA).2poly(dT). Under conditions of low ionic strength, the polynucleotide melted as a double helix with a melting temperature (Tm) of 55.3 degrees C. Hydralazine destabilized this duplex form by reducing its Tm to 52.5 degrees C. Spermidine (2.5 microM), a natural polyamine, provoked the triplex form of poly(dA)-.2poly(dT) with two melting transitions, Tm1 of 42.8 degrees C corresponding to triplex-->duplex+single-stranded DNA and Tm2 of 65.4 degrees C, corresponding to duplex melting. Triplex DNA thus formed in the presence of spermidine was further stabilized by hydralazine (250 microM) with a Tm1 of 53.6 degrees C. A similar stabilization effect of hydralazine was found on triplex DNA formed in the presence of 5 mM Mg2+. CD spectra revealed conformational perturbations of DNA in the presence of spermidine and hydralazine. These results support the hypothesis that hydralazine is capable of stabilizing unusual forms of DNA. In contrast with the weak immunogenicity of DNA in its right-handed B-DNA conformation, these unusual forms are immunogenic and have the potential to elicit anti-DNA antibodies. To test this possibility, we analysed sera from a panel of 25 hydralazine-treated patients for anti-(triplex DNA) antibodies using an ELISA. Our results showed that 72\% of sera from hydralazine-treated patients contained antibodies reacting toward the triplex DNA. In contrast, there was no significant binding of normal human sera to triplex DNA. Taken together our data indicate that hydralazine and related drugs might exert their action by interacting with DNA and stabilizing higher-order structures such as the triplex DNA.
This article was published in Biochem J and referenced in Journal of Drug Metabolism & Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version