alexa Troglitazone, a peroxisome proliferator-activated receptor gamma (PPAR gamma ) ligand, selectively induces the early growth response-1 gene independently of PPAR gamma. A novel mechanism for its anti-tumorigenic activity.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Baek SJ, Wilson LC, Hsi LC, Eling TE

Abstract Share this page

Abstract Troglitazone (TGZ) is a peroxisome proliferator-activated receptor gamma (PPAR gamma) ligand that has pro-apoptotic activity in human colon cancer. Although TGZ binds to PPAR gamma transcription factors as an agonist, emerging evidence suggests that TGZ acts independently of PPAR gamma in many functions, including apoptosis. Early growth response-1 (Egr-1) transcription factor has been linked to apoptosis and shown to be activated by extracellular signal-regulated kinase (ERK). We investigated whether TGZ-induced apoptosis may be related to Egr-1 induction, because TGZ has been known to induce ERK activity. Our results show that Egr-1 is induced dramatically by TGZ but not by other PPAR gamma ligands. TGZ affects Egr-1 induction at least by two mechanisms; TGZ increases Egr-1 promoter activity by 2-fold and prolongs Egr-1 mRNA stability by 3-fold. Inhibition of ERK phosphorylation in HCT-116 cells abolishes the Egr-1 induction by TGZ, suggesting its ERK-dependent manner. Further, the TGZ-induced Egr-1 expression results in increased promoter activity using a reporter system containing four copies of Egr-1 binding sites, and TGZ induces Egr-1 binding activity to Egr-1 consensus sites as assessed by gel shift assay. In addition, TGZ induces ERK-dependent phosphorylation of PPAR gamma, resulting in the down-regulation of PPAR gamma activity. The fact that TGZ-induced apoptosis is accompanied by the biosynthesis of Egr-1 suggests that Egr-1 plays a pivotal role in TGZ-induced apoptosis in HCT-116 cells. Our results suggest that Egr-1 induction is a unique property of TGZ compared with other PPAR gamma ligands and is independent of PPAR gamma activation. Thus, the up-regulation of Egr-1 may provide an explanation for the anti-tumorigenic properties of TGZ. This article was published in J Biol Chem and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords