alexa Tumor angiogenesis is enforced by autocrine regulation of high-mobility group box 1.


Angiology: Open Access

Author(s): van Beijnum JR

Abstract Share this page

The endothelium plays a pivotal role in the progression of solid tumors and is considered a highly relevant target for therapy. However, it emerges that current clinical angiogenesis inhibitors that act through inhibition of tumor-derived growth factors are prone to inducing drug resistance. Therefore, markers of tumor endothelial cells (ECs) themselves provide attractive novel therapeutic targets. In a screen for markers of tumor angiogenesis, we recently identified high-mobility group box 1 (HMGB1), known to act as proinflammatory cytokine and chromatin-binding molecule. Here we report on the role of HMGB1 in angiogenesis by showing that its overexpression is associated with an increased angiogenic potential of ECs. HMGB1 stimulates the expression of players in vascular endothelial growth factor and platelet-derived growth factor signaling, both in vitro and in vivo. Importantly, we show that HMGB1 triggers and helps to sustain this proangiogenic gene expression program in ECs, additionally characterized by increased activity of matrix metalloproteinases, integrins and nuclear factor-κB. Moreover, we found that HMGB1 is involved in several autocrine and/or paracrine feedback mechanisms resulting in positive enforcement of HMGB1 expression, and that of its receptors, RAGE (receptor for advanced glycation end products) and Toll-like receptor 4 (TLR4). Interference in HMGB1 expression and/or function using knockdown approaches and antibody-mediated targeting to break this vicious circle resulted in inhibited migration and sprouting of ECs. Using different in vivo models, therapeutic efficacy of HMGB1 targeting was confirmed. First, we demonstrated induction of HMGB1 expression in the chicken embryo chorioallantoic membrane (CAM) neovasculature following both photodynamic therapy and tumor challenge. We subsequently showed that anti-HMGB1 antibodies inhibited vessel density in both models, accompanied by a reduced vascular expression of angiogenic growth factor receptors. Collectively, these data identify HMGB1 as an important modulator of tumor angiogenesis and suggest the feasibility of targeting HMGB1 for multi-level cancer treatment.

This article was published in Oncogene and referenced in Angiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Vascular Biology & Medicine
    July 24-25, 2017 Chicago, USA
  • International Conference on Angiology
    Oct 16-17, 2017, Budapest, Hungary
  • 21st International Conference on Clinical & Experimental Cardiology
    October 16-18, 2017 Chicago, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

1-702-714-7001Extn: 9037

Business & Management Journals


1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

1-702-714-7001 Extn: 9042

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version