alexa Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dulaimi E,

Abstract Share this page

Abstract Because existing surgical and management methods can consistently cure only early-stage ovarian cancer, novel strategies for early detection are required. Silencing of tumor suppressor genes such as p16INK4a, VHL, and hMLH1 have established promoter hypermethylation as a common mechanism for tumor suppressor inactivation in human cancer and as a promising target for molecular detection in bodily fluids. Using sensitive methylation-specific PCR, we screened matched tumor, preoperative serum or plasma, and peritoneal fluid (washes or ascites) DNA obtained from 50 patients with ovarian or primary peritoneal tumors for hypermethylation status of the normally unmethylated BRCA1 and RAS association domain family protein 1A tumor suppressor genes. Hypermethylation of one or both genes was found in 34 tumor DNA (68\%). Additional examination of one or more of the adenomatous polyposis coli, p14ARF, p16INK4a, or death associated protein-kinase tumor suppressor genes revealed hypermethylation in each of the remaining 16 tumor DNA, which extended diagnostic coverage to 100\%. Hypermethylation was observed in all histologic cell types, grades, and stages of ovarian tumor examined. An identical pattern of gene hypermethylation was found in the matched serum DNA from 41 of 50 patients (82\% sensitivity), including 13 of 17 cases of stage I disease. Hypermethylation was detected in 28 of 30 peritoneal fluid DNA from stage IC-IV patients, including 3 cases with negative or atypical cytology. In contrast, no hypermethylation was observed in nonneoplastic tissue, peritoneal fluid, or serum from 40 control women (100\% specificity). We conclude that promoter hypermethylation is a common and relatively early event in ovarian tumorigenesis that can be detected in the serum DNA from patients with ovary-confined (stage IA or B) tumors and in cytologically negative peritoneal fluid. Analysis of tumor-specific hypermethylation in serum DNA may enhance early detection of ovarian cancer. This article was published in Cancer Res and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

  • Nisreen K Aref
    To compare serum leptin levels in obese women with polycystic ovary syndrome (PCOS) and normal ovulatory obese subjects in Saudi Arabia, and to evaluate the interrelationship between leptin concentration, sex hormones, and insulin resistance.
    PPT Version | PDF Version
  • Eman H Abdel-Rahman
    Update of immunodiagnosis of cystic echinococcosis
    PPT Version | PDF Version
  • Ruben Artero
    A Drosophila high-throughput drug screening platform identifies inhibitors of misregulated alternative splicing events in myotonic dystrophy
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords