alexa Tumor imaging using hyperpolarized 13C magnetic resonance spectroscopy.
General Science

General Science

Journal of Biotechnology & Biomaterials

Author(s): Brindle KM, Bohndiek SE, Gallagher FA, Kettunen MI

Abstract Share this page

Abstract Dynamic nuclear polarization is an emerging technique for increasing the sensitivity of magnetic resonance imaging and spectroscopy, particularly for low-γ nuclei. The technique has been applied recently to a number of 13C-labeled cell metabolites in biological systems: the increase in signal-to-noise allows the spatial distribution of an injected molecule to be imaged as well as its metabolic product or products. This review highlights the most significant molecules investigated to date in preclinical cancer models, either in terms of their demonstrated metabolism in vivo or the biological processes that they can probe. In particular, label exchange between hyperpolarized 13C-labeled pyruvate and lactate, catalyzed by lactate dehydrogenase, has been shown to have a number of potential applications. Finally, techniques to image these molecules are also discussed as well as methods that may extend the lifetime of the hyperpolarized signal. Hyperpolarized magnetic resonance imaging and magnetic resonance spectroscopic imaging have shown great promise for the imaging of cancer in preclinical work, both for diagnosis and for monitoring therapy response. If the challenges in translating this technique to human imaging can be overcome, then it has the potential to significantly alter the management of cancer patients. Copyright © 2011 Wiley-Liss, Inc. This article was published in Magn Reson Med and referenced in Journal of Biotechnology & Biomaterials

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version