alexa Tumor necrosis factor alpha inhibits signaling from the insulin receptor.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM

Abstract Share this page

Abstract Insulin resistance is a common problem associated with infections and cancer and, most importantly, is the central component of non-insulin-dependent diabetes mellitus. We have recently shown that tumor necrosis factor (TNF) alpha is a key mediator of insulin resistance in animal models of non-insulin-dependent diabetes mellitus. Here, we investigate how TNF-alpha interferes with insulin action. Chronic exposure of adipocytes to low concentrations of TNF-alpha strongly inhibits insulin-stimulated glucose uptake. Concurrently, TNF-alpha treatment causes a moderate decrease in the insulin-stimulated autophosphorylation of the insulin receptor (IR) and a dramatic decrease in the phosphorylation of IR substrate 1, the major substrate of the IR in vivo. The IR isolated from TNF-alpha-treated cells is also defective in the ability to autophosphorylate and phosphorylate IR substrate 1 in vitro. These results show that TNF-alpha directly interferes with the signaling of insulin through its receptor and consequently blocks biological actions of insulin.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords