alexa Tumor necrosis factor ligand-receptor superfamily and arthritis.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): Hsu HC, Wu Y, Mountz JD

Abstract Share this page

Abstract The current studies of apoptosis in rheumatoid arthritis (RA) suggest that the TNF ligand-receptor superfamily (TNFRsF) molecules, downstream pathways (activation of proapoptosis or anti-apoptosis pathway), cell types (lymphocytes and synovial fibroblast), and the mechanism that triggers apoptosis (tolerance induction-related, downmodulation of inflammation-related, or DNA damage-related) all exhibit a capability to determine the induction or prevention of RA. This series of defects at different levels and in different cells have been shown to lead to T cell and synovial hyperproliferation, defective apoptosis, excessive apoptosis, or bone erosion. In this chapter, we summarize the available knowledge of the regulation of TNFRsF and their likely pathogenic roles in RA to help identify candidate target cells and target molecules for delivery of gene constructs to modulate apoptosis to prevent the development of RA in both humans and mice. This article was published in Curr Dir Autoimmun and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords