alexa Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS

Abstract Share this page

Abstract The deposition of the amyloid beta (Abeta) peptide in neuritic plaques plays a critical role in the pathogenesis of Alzheimer's disease (AD). Abeta is generated through the proteolysis of amyloid precursor protein (APP) by the sequential actions of beta- and gamma-secretases. Although recent evidence has unveiled much about the biochemical identity and characteristics of gamma-secretase, the mechanism regulating endogenous gamma-secretase activity remains elusive. To identify possible extracellular signals and associated signaling cascades that could regulate APP proteolysis by gamma-secretase activity, we have developed a cell-based reporter gene assay by stably cotransfecting HEK293 cells with the Gal4-driven luciferase reporter gene and the Gal4/VP16-tagged C-terminal fragment of APP (C99-GV), the immediate substrate of gamma-secretase. The cleavage of C99-GV by gamma-secretase releases the transcription factor that activates luciferase expression, providing a quantitative measurement of gamma-secretase activity. Using this reporter assay, we have demonstrated that interferon-gamma, interleukin-1beta, and tumor necrosis factor-alpha can specifically stimulate gamma-secretase activity, concomitant with increased production of Abeta and the intracellular domain of APP (AICD). The gamma-secretase-dependent cleavage of Notch is also enhanced upon the stimulation of these cytokines. The cytokine-enhanced gamma-secretase activity can be suppressed by a potent inhibitor of c-Jun N-terminal kinase (JNK). Furthermore, cells transfected with dominant-positive MEKK1, one of the most potent activators of the JNK cascade, exhibit increased gamma-secretase activity, suggesting that the JNK-dependent mitogen-activated protein kinase pathway could mediate the cytokine-elicited regulation of gamma-secretase. Our studies provide direct evidence that cytokine-elicited signaling cascades control Abeta production by modulating gamma-secretase activity. This article was published in J Biol Chem and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords