alexa Tumor-associated carbohydrate antigens defining tumor malignancy: basis for development of anti-cancer vaccines.
Biochemistry

Biochemistry

Journal of Glycobiology

Author(s): Hakomori S

Abstract Share this page

Abstract Tumors expressing a high level of certain types of tumor-associated carbohydrate antigens (TACAs) exhibit greater metastasis and progression than those expressing low level of TACAs, as reflected in decreased patient survival rate. Well-documented examples of such TACAs are: (i) H/Le(y)/Le(a) in primary non-small cell lung carcinoma; (ii) sialyl-Le(x) (SLe(x)) and sialyl-Le(a) (SLe(a)) in various types of cancer; (iii) Tn and sialyl-Tn in colorectal, lung, breast, and many other cancers; (iv) GM2, GD2, and GD3 gangliosides in neuroectodermal tumors (melanoma and neuroblastoma); (v) globo-H in breast, ovarian, and prostate cancer; (vi) disialylgalactosylgloboside in renal cell carcinoma. Some glycosylations and TACAs suppress invasiveness and metastatic potential. Well-documented examples are: (i) blood group A antigen in primary lung carcinoma; (ii) bisecting beta1 --> 4GlcNAc of N-linked structure in melanoma and other cancers; (iii) galactosylgloboside (GalGb4) in seminoma. The biochemical mechanisms by which the above glycosylation changes promote or suppress tumor metastasis and invasion are mostly unknown. A few exceptional cases in which we have some knowledge are: (i) SLe(x) and SLe(a) function as E-selectin epitopes promoting tumor cell interaction with endothelial cells; (ii) some tumor cells interact through binding of TACA to specific proteins other than selectin, or to specific carbohydrate expressed on endothelial cells or other target cells (carbohydrate-carbohydrate interaction); (iii) functional modification of adhesive receptor (integrin, cadherin, CD44) by glycosylation. So far, a few successful cases of anti-cancer vaccine in clinical trials have been reported, employing TACAs whose expression enhances malignancy. Examples are STn for suppression of breast cancer, GM2 and GD3 for melanoma, and globo-H for prostate cancer. Vaccine development canbe extended using other TACAs, with the following criteria for success: (i) the antigen is expressed highly on tumor cells; (ii) high antibody production depending on two factors: (a) clustering of antigen used in vaccine; (b) choice of appropriate carrier protein or lipid; (iii) high T cell response depending on choice of appropriate carrier protein or lipid; (iv) expression of the same antigen in normal epithelial tissues (e.g., renal, intestinal, colorectal) may not pose a major obstacle, i.e., these tissues are not damaged during immune response. Idiotypic anti-carbohydrate antibodies that mimic the surface profile of carbohydrate antigens, when administered to patients, elicit anti-carbohydrate antibody response, thus providing an effect similar to that of TACAs for suppression of tumor progression. An extension of this idea is the use of peptide mimetics of TACAs, based on phage display random peptide library. Although examples are so far highly limited, use of such "mimotopes" as immunogens may overcome the weak immunogenicity of TACAs in general.
This article was published in Adv Exp Med Biol and referenced in Journal of Glycobiology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • International Conference on Glycobiology
    Sep 21-22, 2017, Crowne Plaza Houston River Oaks, Houston, USA
  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong
  • International Conference on Glycobiology
    Oct 02-04, 2017 Atlanta, USA
  • 4th International Conference on Glycobiology and Glycochemistry
    July 16-18, 2018 Melbourne, Australia
  • 4th Glycobiology World Congress
    September 17-19, 2018 Rome, Italy
Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords