alexa Tuned Escherichia coli as a host for the expression of disulfide-rich proteins.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Salinas G, Pellizza L, Margenat M, Fl M, Fernndez C

Abstract Share this page

Abstract Disulfide-bond formation is a major post-translational modification and is essential for protein folding, stability, and function. This is especially true for secreted proteins, many of which possess great potential for biotechnological applications. Focusing on the use of Escherichia coli for the production of this class of proteins, we describe the mechanisms that maintain redox compartmentalization in the cell, with an emphasis on those that promote the formation and isomerization of disulfide bonds in the bacterial periplasm, while presenting parallel pathways in the eukaryotic endoplasmic reticulum. Based on these concepts, we review the use of E. coli as a cell factory for the production of heterologous disulfide-containing proteins using either peri- or cytoplasmic expression and, in particular, how these compartments can be tuned to improve the yield of correctly folded recombinant proteins. Finally, we describe a few examples of the production of small disulfide-rich proteins (protease inhibitors) to illustrate how soluble, active, and fully oxidized recombinants may be successfully obtained upon peri- or cytoplasmic expression in E. coli. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This article was published in Biotechnol J and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords