alexa Tuning array morphology for high-strength carbon-nanotube fibers.
Engineering

Engineering

Journal of Applied Mechanical Engineering

Author(s): Zheng L, Sun G, Zhan Z

Abstract Share this page

Abstract Vertically aligned carbon-nanotube arrays are synthesized by chemical vapor deposition. Carbon-nanotube fibers are directly spun from the obtained nanotube arrays and then tested mechanically. A strong correlation between the array morphologies and the mechanical properties of the fibers is observed: well-aligned arrays yield fibers with much higher performance, while wavy and entangled arrays give poor fiber properties. More importantly, such array morphologies could be controlled by introducing hydrogen or oxygen during the nanotube synthesis. By simply switching the growth condition from 150 ppm oxygen addition to 2\% hydrogen addition, the nanotube array changes from the wavy morphology to the well-aligned morphology, and correspondingly the tensile strength of the resultant fibers could be increased by 4.5 times, from 0.29 GPa for the fibers spun from the oxygen-assistance-grown nanotube arrays to 1.3 GPa for the fibers spun from the hydrogen-assistance-grown nanotube arrays. The detailed effects of hydrogen and oxygen on the nanotube growth, especially on the growth rate and the array spinnability, are extensively studied. The formation mechanism of the different morphologies of the nanotube arrays and the failure mechanism of the nanotube fibers are also discussed in detail. This article was published in Small and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords