alexa Two adaptive weighting methods to test for rare variant associations in family-based designs.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Fang S, Sha Q, Zhang S

Abstract Share this page

Abstract Although next-generation DNA sequencing technologies have made rare variant association studies feasible and affordable, the development of powerful statistical methods for rare variant association studies is still under way. Most of the existing methods for rare variant association studies compare the number of rare mutations in a group of rare variants (in a gene or a pathway) between cases and controls. However, these methods assume that all causal variants are risk to diseases. Recently, several methods that are robust to the direction and magnitude of effects of causal variants have been proposed. However, they are applicable to unrelated individuals only, whereas family data have been shown to improve power to detect rare variants. In this article, we propose two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. Using extensive simulation studies, we evaluate and compare our proposed methods with two methods based on the weights proposed by Madsen and Browning. Our results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning, especially when both risk and protective variants are present. © 2012 Wiley Periodicals, Inc. This article was published in Genet Epidemiol and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version