alexa Two mild cystic fibrosis-associated mutations result in severe cystic fibrosis when combined in cis and reveal a residue important for cystic fibrosis transmembrane conductance regulator processing and function.
Genetics

Genetics

Single Cell Biology

Author(s): Clain J, Fritsch J, LehmannChe J, Bali M, Arous N, , Clain J, Fritsch J, LehmannChe J, Bali M, Arous N,

Abstract Share this page

Abstract The number of complex cystic fibrosis transmembrane conductance regulator (CFTR) genotypes identified as having double-mutant alleles with two mutations inherited in cis has been growing. We investigated the structure-function relationships of a severe cystic fibrosis (CF)-associated double mutant (R347H-D979A) to evaluate the contribution of each mild mutation to the phenotype. CFTR mutants expressed in HeLa cells were analyzed for protein biosynthesis and Cl(-) channel activity. Our data show that R347H is associated with mild defective Cl(-) channel activity and that the D979A defect leads to misprocessing. The mutant R347H-D979A combines both defects for a dramatic decrease in Cl(-) current. To decipher the molecular mechanism of this phenotype, single and double mutants with different charge combinations at residues 347 and 979 were constructed as charged residues were involved in this complex genotype. These studies revealed that residue 979, located in the third cytoplasmic loop, is critical for CFTR processing and Cl(-) channel activity highlighting the role of charged residues. These results have also important implications for CF, as they show that two mutations in cis can act in concert to alter dramatically CFTR function contributing to the wide phenotypic variability of CF disease. This article was published in J Biol Chem and referenced in Single Cell Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords