alexa Two ranges in blood pressure power spectrum with different 1 f characteristics.
Cardiology

Cardiology

Angiology: Open Access

Author(s): Wagner CD, Persson PB, Wagner CD, Persson PB

Abstract Share this page

Abstract Most time series of biological systems contain a considerable amount of 1/f noise. This form of noise is characterized by fluctuations in which power steadily increases at lower frequencies. To determine the origin of 1/f noise, blood pressure (BP) was measured over 4 h in conscious foxhounds. The power spectrum of BP was obtained by fast Fourier analysis. After log-log transformation, the power spectrum (log power vs. log frequency) characteristically revealed a linear regression. Surprisingly, there were two 1/f ranges. The first 1/f region was located within a low-frequency range (< 10(-1.7) Hz; slope -0.9; r = -0.9). The second 1/f range was identified at 10(-1.4) to 10(-1) Hz (slope -1.2; r = -0.7). After baroreceptor denervation (n = 7), the steepness of both slopes increased significantly (P < 0.05 for lower 1/f range, P < 0.001 for higher 1/f range), and the difference in slopes was clearly greater (slope in lower range -1.2; r = 0.96 vs. -3.1, r = -0.92 in the higher range; P < 0.001). Neither alpha-receptor (n = 6) nor beta-receptor blockade (n = 4) considerably changed the slopes after denervation. However, autonomic blockade (n = 5) restored the slope in the low-frequency range (-0.9; r = -0.9). In conclusion, there are two independently modulated 1/f frequency ranges in BP time series. Baroreceptors especially attenuate 1/f noise in the higher frequency range.
This article was published in Am J Physiol and referenced in Angiology: Open Access

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords