alexa Two regions of the adenovirus early region 1A proteins are required for transformation.

Author(s): Whyte P, Ruley HE, Harlow E

Abstract Share this page

Abstract Regions of the adenovirus type 5 early region 1A (E1A) proteins that are required for transformation were defined by using a series of deletion mutants. Deletion mutations collectively spanning the entire protein-coding region of E1A were constructed and assayed for their ability to cooperate with an activated ras oncogene to induce transformation in primary baby rat kidney cells. Two regions of E1A (amino acids 1 to 85 and 121 to 127) were found to be essential for transformation. Deletion of all or part of the region from amino acids 121 to 127 resulted in a total loss of transforming ability. An adjacent stretch of amino acids (residues 128 to 139), largely consisting of acidic residues, was found to be dispensable for transformation but appeared to influence the efficiency of transformation. Amino acids 1 to 85 made up a second region of the E1A protein that was essential for transformation. Deletion of all or part of this region resulted in a loss of the transforming activity. Even a mutation resulting in a single amino acid change at position 2 of the polypeptide chain was sufficient to eliminate transformation. Deletion of amino acids 86 to 120 or 128 to 289 did not eliminate transformation, although some mutations in these regions had lowered efficiencies of transformation. Foci induced by transformation-competent mutants could be expanded into cell lines that retained their transformed morphology and constitutively expressed the mutant E1A proteins.
This article was published in J Virol and referenced in

Relevant Expert PPTs

Recommended Conferences

Recommended Journals

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version