alexa Two rhombomeres are altered in Hoxa-1 mutant mice.
Medicine

Medicine

Anatomy & Physiology: Current Research

Author(s): Mark M, Lufkin T, Vonesch JL, Ruberte E, Olivo JC,

Abstract Share this page

Abstract This study provides a detailed description of the anatomical defects in the Hoxa-1-/- mutant mice previously generated in our laboratory (T. Lufkin, A. Dierich, M. LeMeur, M. Mark and P. Chambon, 1991; Cell 66, 1105-1119). Three-dimensional reconstructions of the Hoxa-1-/- rhombencephalon reveals that it bears only five rhombomeric structures (ie. morphological segments) instead of the normal seven. The first three of these rhombomeres appear normal as judged from the distribution pattern of CRABPI transcripts in the neurectoderm and from the histological analysis of the cranial nerve components derived from these structures. In contrast, the neural-crest-cell-free region normally located opposite rhombomere 5 is lacking in Hoxa-1-/- embryos, and motor neurons of the facial and abducens nerves, which normally differentiate within rhombomeres 4, 5 and 6, are missing in Hoxa-1-/- fetuses. These morphological data, combined with the determination of the molecular positional identities of the rhombomeres 4 and 5 (P. Dollé, T. Lufkin, R. Krumlauf, M. Mark, D. Duboule and P. Chambon, 1993; Proc. Natl. Acad. Sci. USA, in press), suggest that rhombomere 4 is markedly reduced, whereas rhombomere 5 is almost absent. Thus, the remnants of rhombomeres 4 and 5 appear to be fused caudally with rhombomere 6 to form a single fourth rhombomeric structure. Moreover, the migration of neural crest cells contributing to the glossopharyngeal and vagus nerves occurs in a more rostral position, resulting in abnormalities of these cranial nerves, which were visualized by whole-mount anti-neurofilament immunostaining. The mutual relationship along the rostrocaudal axis between the otic pit and the neuroepithelial site of int-2 protein secretion (a putative otogenic cue) is not significantly changed in Hoxa-1-/- embryos. However, the abnormal relationship between the rhombencephalon and the epithelial inner ear may account for the aplasia and faulty differentiation of the membranous labyrinth, the disruption of the cartilaginous otic capsule and the disorganisation of some middle ear structures. This phenotype is compared with that of the Hoxa-1-/- mutants generated by O. Chisaka, T. S. Musci and M. R. Capecchi, 1992 (Nature 335, 516-520) and with that of the mice homozygous for the kreisler mutation.
This article was published in Development and referenced in Anatomy & Physiology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords