alexa Ultimate intrinsic signal-to-noise ratio for parallel MRI: electromagnetic field considerations.
Medicine

Medicine

Journal of Medical Diagnostic Methods

Author(s): Ohliger MA, Grant AK, Sodickson DK

Abstract Share this page

Abstract A method is described for establishing an upper bound on the spatial encoding capabilities of coil arrays in parallel MRI. Ultimate intrinsic signal-to-noise ratio (SNR), independent of any particular conductor arrangement, is calculated by expressing arbitrary coil sensitivities in terms of a complete set of basis functions that satisfy Maxwell's equations within the sample and performing parallel imaging reconstructions using these basis functions. The dependence of the ultimate intrinsic SNR on a variety of experimental conditions is explored and a physically intuitive explanation for the observed behavior is provided based on a comparison between the electromagnetic wavelength and the distance between aliasing points. Imaging at high field strength, with correspondingly short wavelength, is shown to offer advantages for parallel imaging beyond those already expected due to the larger available spin polarization. One-dimensional undersampling of k-space yields a steep drop in attainable SNR for more than a 5-fold reduction of scan time, while 2D undersampling permits access to much higher degrees of acceleration. Increased tissue conductivity decreases baseline SNR, but improves parallel imaging performance. A procedure is also provided for generating the optimal coil sensitivity pattern for a given acceleration, which will serve as a useful guide for future coil designs. Copyright 2003 Wiley-Liss, Inc. This article was published in Magn Reson Med and referenced in Journal of Medical Diagnostic Methods

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords