alexa Ultra-relativistic electrons in Jupiter's radiation belts.
Environmental Sciences

Environmental Sciences

Hydrology: Current Research

Author(s): Bolton SJ, Janssen M, Thorne R, Levin S, Klein M,

Abstract Share this page

Abstract Ground-based observations have shown that Jupiter is a two-component source of microwave radio emission: thermal atmospheric emission and synchrotron emission from energetic electrons spiralling in Jupiter's magnetic field. Later in situ measurements confirmed the existence of Jupiter's high-energy electron-radiation belts, with evidence for electrons at energies up to 20[?]MeV. Although most radiation belt models predict electrons at higher energies, adiabatic diffusion theory can account only for energies up to around 20[?]MeV. Unambiguous evidence for more energetic electrons is lacking. Here we report observations of 13.8[?]GHz synchrotron emission that confirm the presence of electrons with energies up to 50[?]MeV; the data were collected during the Cassini fly-by of Jupiter. These energetic electrons may be repeatedly accelerated through an interaction with plasma waves, which can transfer energy into the electrons. Preliminary comparison of our data with model results suggests that electrons with energies of less than 20[?]MeV are more numerous than previously believed. This article was published in Nature and referenced in Hydrology: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version