alexa Ultrasonic reduction of excess sludge from the activated sludge system.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Zhang G, Zhang P, Yang J, Chen Y

Abstract Share this page

Abstract Sludge treatment has long become the most challenging problem in wastewater treatment plants. Previous studies showed that ozone or chlorine effectively liquefies sludge into substrates for bio-degradation in the aeration tank, and thus reduces the excess sludge. This paper employs ultrasound to reduce the excess sludge from the sequential batch reactor (SBR) system. Partial sludge was disintegrated into dissolved substrates by ultrasound in an external sono-tank and was then returned to the SBR for bio-degradation. The results showed that ultrasound (25kHz) effectively liquefied the sludge. The most effective conditions for sludge reduction were as following: sludge sonication ratio of 3/14, ultrasound intensity of 120kW/kgDS, and sonication duration of 15min. The amount of excess sludge was reduced by 91.1\% to 17.8mg/(Ld); the organic content and settleability of sludge in the SBR were not impacted. The chemical oxygen demand (COD) removal efficiency was 81.1\%, the total nitrogen (TN) removal efficiency was 17-66\%, and high phosphorus concentration in the effluent was observed. This article was published in J Hazard Mater and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version