alexa Ultrasound assisted phase-transfer catalytic epoxidation of 1,7-octadiene - a kinetic study.
Chemistry

Chemistry

Chemical Sciences Journal

Author(s): Wang ML, Rajendran V

Abstract Share this page

Abstract An ultrasound assisted phase-transfer catalyzed epoxidation of 1,7-octadiene is greatly enhanced by using a cocatalyst of phosphotungstic acid in the presence of hydrogen peroxide in an organic solvent/aqueous solution two-phase medium. An active intermediate of the catalyst (Q3PW12(O)nO40, where Q = R4N+) produced from the reaction of phosphotungstic acid, hydrogen peroxide, and Aliquat 336. A rational mechanism of epoxidation is proposed to account for the reaction from the experimental evidence. The organic-phase reactions, including two series reactions, are the rate-controlling steps to produce two products, viz., 1,2-epoxy-7-octene and 1,2,7,8-diepoxyoctane. The kinetics of epoxidation, including the characteristics of the catalyst and the effect of the amount of cocatalyst, agitation speed, quaternary ammonium salts, amount of Aliquat 336, amount of hydrogen peroxide, amount of chloroform, pH value, organic solvents, and temperature on the conversion of 1,7-octadiene were investigated in detail. A kinetic model was built, from which a pseudo-first-order rate law is sufficient to describe the behavior of the reaction. This article was published in Ultrason Sonochem and referenced in Chemical Sciences Journal

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords