alexa Ultrastructural and electron-immunocytochemical characterization of cells in epiretinal membranes.
Ophthalmology

Ophthalmology

Journal of Clinical & Experimental Ophthalmology

Author(s): Vinores SA, Campochiaro PA

Abstract Share this page

Electron-immunocytochemical staining for three intermediate filament (IF) proteins, keratin (K), glial fibrillary acidic protein (GFAP), and vimentin (V), and for the macrophage marker, EBM/11 (E), was performed on epiretinal membranes obtained during vitrectomies performed for proliferative vitreoretinopathy (PVR), postdetachment macular puckers (PDMPs), idiopathic macular puckers (IMPs), or macular puckers associated with other disease processes. The ultrastructural and immunocytochemical characteristics of the cells were compared. Unstained cells outnumbered stained cells for each of the markers in almost all membranes. Six cell types, based on ultrastructure, were found in the majority of epiretinal membranes: 1) polarized cells with microvilli on the free border and foot processes anchoring them to extracellular matrix that consistently stained negative for all of the immunocytochemical markers; 2) spindle-shaped fibroblastlike cells that were generally negative for all markers, but rarely positive for V; 3) large undifferentiated cells with large, lightly stained nuclei and little cytoplasm that frequently expressed one of the intermediate filament (IF) proteins; 4) poorly differentiated cells that contained numerous mitochondria and frequently expressed one of the IF proteins; 5) undifferentiated, pigment-laden cells that rarely stained for any of the above IF proteins, but occasionally showed K or V positivity in a portion of the cell, suggesting that they may be losing or acquiring these proteins, and that rarely expressed GFAP; and 6) small, round, mononuclear cells with short processes that were sometimes, but not always, positive for E and that were consistently negative for K, V, and GFAP. In addition to these morphologic types, transitional cells demonstrating features of two or more of the above cell types were seen, suggesting that phenotypic changes between the various cell types can occur. The amount of extracellular matrix in epiretinal membranes showed a correlation with disease process (PVR greater than PDMP greater than IMP), and a negative correlation with the percentage of cells expressing a highly differentiated polarized morphology and with the percentage of cells staining for IF proteins. These data suggest that both cell morphology and IF protein expression may be dependent in part on microenvironment and that neither alone can be used to identify unequivocally the derivation of particular cells found in epiretinal membranes. The integration of ultrastructural and immunocytochemical data may provide a more accurate determination of the cell of origin and of phenotypic changes that have occurred. In some cases, however, both ultrastructural and IF protein composition taken together are insufficient for the precise identification of all cells.(ABSTRACT TRUNCATED AT 250 WORDS)

  • To read the full article Visit
  • Open Access
This article was published in Invest Ophthalmol Vis Sci. and referenced in Journal of Clinical & Experimental Ophthalmology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords