alexa Uncovering new signaling proteins and potential drug targets through the interactome analysis of Mycobacterium tuberculosis.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Cui T, Zhang L, Wang X, He ZG

Abstract Share this page

Abstract BACKGROUND: Analysis of the pathogen interactome is a powerful approach for dissecting potential signal transduction and virulence pathways. It also offers opportunities for exploring new drug targets. RESULTS: In this study, a protein-protein interaction (PPI) network of Mycobacterium tuberculosis H37Rv was constructed using a homogenous protein mapping method, which has shown molecular chaperones, ribosomal proteins and ABC transporters to be highly interconnected proteins. A further analysis of this network unraveled the function of hypothetical proteins as well as a potential signaling pathway. A hypothetical protein, Rv2752c, which was linked to a metal cation-transporting ATPase, was characterized as a metal-beta-lactamase, through domain analysis in combination with an in vitro activity experiment. A second hypothetical protein, Rv1354c, and an unknown protein kinase, PknK, interacted with a similar group of inner membrane-associated ABC transporters in the PPI network. The interactions of Rv1354 with these proteins were also confirmed by a further bacterial two-hybrid analysis. According to protein domain structures, the unique M. tuberculosis Rv1354c gene was proposed, for the first time, to be responsible for the turnover of cyclic-di-GMP, a second messenger molecule in this bacterium. A further structure-based inhibitors screening for Rv1354c was also performed in silicon. CONCLUSION: We constructed a comprehensive protein-protein interaction network for M. tuberculosis consisting of 738 proteins and 5639 interaction pairs. Our analysis unraveled the function of hypothetical proteins as well as a potential signaling pathway. The group of ABC transporters, PknK, and Rv1354c were proposed to constitute a potential membrane-associated signaling pathway that cooperatively responds to environmental stresses in M. tuberculosis. The study therefore provides valuable clues in exploring new signaling proteins, virulence pathways, and drug targets.
This article was published in BMC Genomics and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords