alexa Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology.


Journal of Applied Mechanical Engineering

Author(s): Zhang Z, Towers CE, Towers DP

Abstract Share this page

Abstract A novel uneven fringe projection technique is presented whereby nonuniformly spaced fringes are generated at a digital video projector to give evenly spaced fringes in the measurement volume. The proposed technique simplifies the relation between the measured phase and the object's depth independent of pixel position. This method needs just one coefficient set for calibration and depth calculation. With uneven fringe projection the shape data are referenced to a virtual plane instead of a physical reference plane, so an improved measurement with lower uncertainty is achieved. Further, the method can be combined with a radial lens distortion model. The theoretical foundation of the method is presented and experimentally validated to demonstrate the advantages of the uneven fringe projection approach compared with existing methods. Measurement results on a National Physical Laboratory (UK) "step standard" confirm the measurement uncertainty using the proposed method.
This article was published in Appl Opt and referenced in Journal of Applied Mechanical Engineering

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version