alexa Universal fault-tolerant quantum computation on decoherence-free subspaces
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Bacon D, Kempe J, Lidar DA, Whaley KB

Abstract Share this page

Abstract A general scheme to perform universal, fault-tolerant quantum computation within decoherence-free subspaces (DFSs) is presented. At most two-qubit interactions are required, and the system remains within the DFS throughout the entire implementation of a quantum gate. We show explicitly how to perform universal computation on clusters of the four-qubit DFS encoding one logical qubit each under spatially symmetric (collective) decoherence. Our results have immediate relevance to quantum computer implementations in which quantum logic is implemented through exchange interactions, such as the recently proposed spin-spin coupled quantum dot arrays and donor-atom arrays. This article was published in Phys Rev Lett and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords