alexa Up-regulation of P-glycoprotein by HIV protease inhibitors in a human brain microvessel endothelial cell line.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Pharmacogenomics & Pharmacoproteomics

Author(s): Zastre JA, Chan GN, Ronaldson PT, Ramaswamy M, Couraud PO,

Abstract Share this page

Abstract A major concern regarding the chronic administration of antiretroviral drugs is the potential for induction of drug efflux transporter expression (i.e., P-glycoprotein, P-gp) at tissue sites that can significantly affect drug distribution and treatment efficacy. Previous data have shown that the inductive effect of human immunodeficiency virus protease inhibitors (PIs) is mediated through the human orphan nuclear receptor, steroid xenobiotic receptor (SXR or hPXR). The objectives of this study were to investigate transport and inductive properties on efflux drug transporters of two PIs, atazanavir and ritonavir, at the blood-brain barrier by using a human brain microvessel endothelial cell line, hCMEC/D3. Transport properties of PIs by the drug efflux transporters P-gp and multidrug resistance protein 1 (MRP1) were assessed by measuring the cellular uptake of (3)H-atazanavir or (3)H-ritonavir in P-gp and MRP1 overexpressing cells as well as hCMEC/D3. Whereas the P-gp inhibitor, PSC833, increased atazanavir and ritonavir accumulation in hCMEC/D3 cells by 2-fold, the MRP inhibitor MK571 had no effect. P-gp, MRP1, and hPXR expression and localization were examined by Western blot analysis and immunogold cytochemistry at the electron microscope level. Treatment of hCMEC/D3 cells for 72 hr with rifampin or SR12813 (two well-established hPXR ligands) or PIs (atazanavir or ritonavir) resulted in an increase in P-gp expression by 1.8-, 6-, and 2-fold, respectively, with no effect observed for MRP1 expression. In hCMEC/D3 cells, cellular accumulation of these PIs appears to be primarily limited by P-gp efflux activity. Long-term exposure of atazanavir or ritonavir to brain microvessel endothelium may result in further limitations in brain drug permeability as a result of the up-regulation of P-gp expression and function. This article was published in J Neurosci Res and referenced in Journal of Pharmacogenomics & Pharmacoproteomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords