alexa Upstream and downstream of mTOR.
Neurology

Neurology

Autism-Open Access

Author(s): Hay N, Sonenberg N

Abstract Share this page

Abstract The evolutionarily conserved checkpoint protein kinase, TOR (target of rapamycin), has emerged as a major effector of cell growth and proliferation via the regulation of protein synthesis. Work in the last decade clearly demonstrates that TOR controls protein synthesis through a stunning number of downstream targets. Some of the targets are phosphorylated directly by TOR, but many are phosphorylated indirectly. In this review, we summarize some recent developments in this fast-evolving field. We describe both the upstream components of the signaling pathway(s) that activates mammalian TOR (mTOR) and the downstream targets that affect protein synthesis. We also summarize the roles of mTOR in the control of cell growth and proliferation, as well as its relevance to cancer and synaptic plasticity. This article was published in Genes Dev and referenced in Autism-Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Autism
    Aug 21-22, 2017 Los Angeles, USA
  • 3rd International Conference on Epilepsy and Treatment
    September 01-17 Brussels, Belgium

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords