alexa Uptake of zinc from zinc sulfate and zinc proteinate by ovine ruminal and omasal epithelia.
Biochemistry

Biochemistry

Biochemistry & Physiology: Open Access

Author(s): Wright CL, Spears JW, Webb KE Jr

Abstract Share this page

Abstract Uptake and transport of Zn from (65)Zn-labeled ZnSO(4) and Zn proteinate (ZnProt) by ruminal and omasal epithelia were examined by using a parabiotic chamber system. Uptake was measured during a 4-h incubation with 10, 20, or 200 microM Zn as ZnSO(4) or ZnProt in the mucosal buffer (pH 6.0, Krebs-Ringer phosphate). Zinc uptake and transport were also evaluated after simulated ruminal digestion. Buffered ruminal fluid contained a feed substrate and 10 or 200 microM added Zn as ZnSO(4) or ZnProt. In a preliminary experiment, uptake of Zn by omasal tissue was low; thus, the remaining experiments were conducted solely with ruminal epithelium. Incubations to determine the effect of time on Zn uptake from mucosal buffer containing 20 microM added Zn as ZnSO(4) or ZnProt resulted in increased (P < 0.01) Zn uptake as incubation time increased from 30 to 240 min. Zinc uptake was also greater (P = 0.02) from mucosal buffer containing ZnProt compared with ZnSO(4). Zinc uptake from incubations containing 10 or 200 microM was affected by source x concentration (P = 0.05) and concentration x time (P < 0.01) interactions. With 10 microM Zn, uptake was not influenced by Zn source, whereas when 200 microM Zn was added, Zn uptake from ZnProt was greater than from ZnSO(4). Increasing incubation time resulted in increased Zn uptake with 200 microM Zn in the mucosal buffer; however, with 10 microM Zn, uptake did not change after 30 min. After simulated ruminal fermentation, the proportion of Zn in a soluble form was influenced by a source x concentration interaction (P = 0.03). After 18 h of incubation, the proportion of Zn that was soluble was not different between ZnProt and ZnSO(4) in buffered ruminal fluid that contained 10 microM added Zn, but was greater for ZnProt compared with ZnSO(4) with 200 microM Zn in the incubation. Zinc uptake from the aqueous fractions of simulated ruminal digestions containing 200 microM added Zn was greater (P < 0.01) than from those containing 10 microM added Zn. Zinc transport, based on detection of (65)Zn in serosal buffer, did not occur in any of the experiments. The results of the current experiments suggest that absorption of Zn into the bloodstream does not occur from the ruminant foresto-mach; however, Zn uptake occurs in ruminal tissue and is greater from ZnProt than from ZnSO(4). This article was published in J Anim Sci and referenced in Biochemistry & Physiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords