alexa Use of peak systolic strain as an index of regional left ventricular function: comparison with tissue Doppler velocity during dobutamine stress and myocardial ischemia.
Psychiatry

Psychiatry

Journal of Addiction Research & Therapy

Author(s): Armstrong G, Pasquet A, Fukamachi K, Cardon L, Olstad B,

Abstract Share this page

Abstract OBJECTIVES: The goals of this study were to examine peak systolic strain as an index of regional function in an animal model of inotropic stress and ischemia, and to compare these results with peak systolic myocardial tissue Doppler velocity (MDV). BACKGROUND: Myocardial tissue Doppler velocity is an objective measure of regional left ventricular responses to inotropic stimulation and ischemia, but it is affected by tethering from adjacent segments and translational movement. Myocardial Doppler strain (epsilon, relative change in length) is a more local measure of contractility, which can now be derived noninvasively from MDV. METHODS: Eight dogs underwent graded dobutamine infusion followed by coronary occlusion. Epicardial 2-dimensional echocardiography and color MDV of the left ventricle were obtained and digitized from the short-axis view at baseline and with dobutamine doses of 2, 4, and 8 microg/kg per minute. These were repeated 0, 10, 20, 45, and 90 seconds after occlusion of the left anterior descending artery (LAD) (n = 3) or circumflex coronary artery (n = 5). Dobutamine was continued at 8 microg/kg per minute during coronary occlusion. The peak systolic radial MDV (cm/s) and systolic strain (epsilon(s), percent thickening) in the anterior and posterior walls were measured off-line at each stage. RESULTS: Dobutamine caused an increase in MDV (P =.0001) and epsilon(s) (P =.09) above baseline values. Coronary occlusion caused a reduction in wall motion; after 45 seconds, all nonperfused segments were hypokinetic. There was a corresponding decrease in MDV and epsilon(s), but this occurred earlier for epsilon(s), and the difference between ischemic and nonischemic segments was greater for epsilon(s) than for MDV (P <. 03). Nonischemic regions trended to an increase in epsilon(s) (compensatory hyperkinesis), whereas MDV trended downward, probably reflecting the global decrease in left ventricular function. CONCLUSION: Both MDV and epsilon(s) increase with dobutamine and decrease during ischemia. epsilon(s) appears to respond to local ischemia earlier than MDV, perhaps because it is a more local measure. Thus epsilon(s) may prove to be an accurate parameter for the clinical recognition of regional ischemia.
This article was published in J Am Soc Echocardiogr and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords