alexa Use of RAPD to detect sodium arsenite-induced DNA damage in human lymphoblastoid cells.


Journal of Environmental & Analytical Toxicology

Author(s): Lee YC, Yang VC, Wang TS

Abstract Share this page

Abstract Inorganic arsenic is a known human carcinogen, yet its mechanism of action remains unclear. Our previous study showed that arsenite significantly induces oxidative DNA adducts and DNA-protein cross-links in several mammalian cell lines. In the present study, we used the random amplified polymorphic DNA (RAPD) assay to evaluate the possible target in the genomic DNA of human lymphoblastoid cells that were exposed to sodium arsenite. Treatment with both 10 and 80 microM arsenite for 4h induced significant changes in RAPD profiles compared with the control pattern. Two 10-mer RAPD primers (D11 and F1) produced the most distinguishable banding profiles between arsenite-treated and control genomic DNA. The sequencing of four arsenite-sensitive RAPD bands showed that the RB1CC1 and PACE4 genes might be the DNA targets of sodium arsenite treatment. We propose that arsenite may induce sequence- or gene-specific damage and then change the RAPD profile in human lymphoblastoid cells. The results of our study also show that RAPD combined with other techniques is a good tool for detecting alterations in genomic DNA and for the direct screening of new molecular markers related to arsenite-induced carcinogenesis. This article was published in Toxicology and referenced in Journal of Environmental & Analytical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version