alexa Use of the positive predictive value to correct for disease misclassification in epidemiologic studies.
Infectious Diseases

Infectious Diseases

Epidemiology: Open Access

Author(s): Brenner H, Gefeller O

Abstract Share this page

Abstract Misclassification problems of the disease status often arise in large epidemiologic cohort studies in which the outcome is classified on the basis of record linkage with routinely collected error-prone data sources, such as cancer registries or mortality statistics. If the misclassification is nondifferential, i.e., independent of the exposure status, this leads to bias toward the null in estimates of relative risk. A variety of methods have been proposed to correct for this bias. Most approaches are based on estimates of the sensitivity and specificity of disease classification from validation studies, which typically require invasive and time-consuming diagnostic procedures. For ethical and practical reasons, such procedures may often not be applied on individuals classified as not having the disease, in which case estimates of sensitivity and specificity cannot be obtained. In this paper, an alternative correction method is proposed based on estimates of the positive predictive value, which requires validation of the diagnosis among samples of individuals classified as having the disease only. The method is applicable in situations with either differential or nondifferential specificity of disease classification as long as the sensitivity is nondifferential. Point estimates and large-sample interval estimates of the corrected relative risk are algebraically derived. The performance of the method is assessed by extensive simulations and found to be satisfactory even for small sample sizes.
This article was published in Am J Epidemiol and referenced in Epidemiology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords