alexa Using nanoelectrospray ion mobility spectrometry (GEMMA) to determine the size and relative molecular mass of proteins and protein assemblies: a comparison with MALLS and QELS.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Kapellios EA, Karamanou S, Sardis MF, Aivaliotis M, Economou A,

Abstract Share this page

Abstract The determination of protein assembly size and relative molecular mass is currently of great importance in biochemical analysis. In particular, the technique of nanoelectrospray (nES) with a gas-phase electrophoretic mobility molecular analyzer (GEMMA) has received increased attention for such measurements. However, in order for the GEMMA technique to gain broader acceptance in protein analysis, it must be further evaluated and compared with other established bioanalytical techniques. In the present study, nES-GEMMA was evaluated for the analysis of a set of protein and protein complexes involved in the Sec and the bacterial type III secretion pathway of enteropathogenic Escherichia coli bacteria. The same set of proteins, isolated and purified using standard biochemical protocols, were also analyzed using multi-angle laser light scattering (MALLS) and quasi-elastic light scattering (QELS), following size exclusion chromatography. This allowed for direct comparisons between the three techniques. It was found that nES-GEMMA, in comparison to the more established MALLS and QELS techniques, offers several complementary advantages. It requires considerably less amount of material, i.e., nanogram vs. milligram amounts, and time per sample analysis, i.e., few minutes vs. tens of minutes. Whereas the determined size and relative molecular mass are similar between the compared methods, the electrophoretic diameters determined using nES-GEMMA seem to be systematically smaller compared to the hydrodynamic diameter derived by QELS. Some of the GEMMA technique disadvantages include its narrow dynamic range, limited by the fact that at elevated protein concentrations there is increased potential for the occurrence of nES-induced oligomers. Thus, it is preferred to analyze dilute protein solutions because non-specific oligomers are less likely to occur whereas biospecific oligomers remain detected. To further understand the formation of nES-oligomers, the effect of buffer concentration on their formation was evaluated. Also, nES-GEMMA is not compatible with all the buffers commonly used with MALLS and QELS. Overall, however, the nES-GEMMA technique shows promise as a high-throughput proteomics/protein structure tool. This article was published in Anal Bioanal Chem and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
  • Graphene & 2D Materials
    November 6-7, 2017 Frankfurt, Germany
  • World Congress on Nanoscience and Nano Technology
    October 16-17, 2017 Dubai, UAE
  • World Medical Nanotechnology Congress
    October 18-19, 2017 Osaka, Japan
  • Nanoscienceand Molecular Nanotechnology
    Nov 06-08, 2017 Frankfurt, Germany
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version