alexa Validation of a model describing two-dimensional heat transfer during solid-state fermentation in packed bed bioreactors.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Sangsurasak P, Mitchell DA

Abstract Share this page

Abstract A two-dimensional heat transfer model was validated against two experimental studies from the literature which describe the growth of Aspergillus niger during solid-state fermentation in packed bed bioreactors. With the same set of model parameters, the two-dimensional model was able to describe both radial temperature gradients, which dominated in one of the studies, and axial temperature gradients, which dominated in the other study. The sensitivity of the model predictions to the characteristics of the substrate and the microbe were explored. The temperatures reached in the column are most sensitive to parameters which affect the peak heat load, including the substrate packing density, the maximum specific growth rate, and the maximum biomass concentration. Even though the bed is assumed to be aerated with saturated air, the increase in temperature with bed height increases the water-carrying capacity of the air and therefore enables evaporation to contribute significantly to cooling. The model suggests that evaporation can remove as much as 78\% of the heat from the bed during times of peak heat generation. Our model provides a tool which can guide the design and operation of packed bed bioreactors. However, further improvements are necessary to do this effectively, the most important of which is the incorporation of a water balance. Copyright 1998 John Wiley & Sons, Inc.
This article was published in Biotechnol Bioeng and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords