alexa Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits.
Diabetes & Endocrinology

Diabetes & Endocrinology

Journal of Diabetes & Metabolism

Author(s): Ginde AA, Blanc PG, Lieberman RM, Camargo CA Jr

Abstract Share this page

Abstract BACKGROUND: Accurate identification of hypoglycemia cases by International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes will help to describe epidemiology, monitor trends, and propose interventions for this important complication in patients with diabetes. Prior hypoglycemia studies utilized incomplete search strategies and may be methodologically flawed. We sought to validate a new ICD-9-CM coding algorithm for accurate identification of hypoglycemia visits. METHODS: This was a multicenter, retrospective cohort study using a structured medical record review at three academic emergency departments from July 1, 2005 to June 30, 2006. We prospectively derived a coding algorithm to identify hypoglycemia visits using ICD-9-CM codes (250.3, 250.8, 251.0, 251.1, 251.2, 270.3, 775.0, 775.6, and 962.3). We confirmed hypoglycemia cases by chart review identified by candidate ICD-9-CM codes during the study period. The case definition for hypoglycemia was documented blood glucose 3.9 mmol/l or emergency physician charted diagnosis of hypoglycemia. We evaluated individual components and calculated the positive predictive value. RESULTS: We reviewed 636 charts identified by the candidate ICD-9-CM codes and confirmed 436 (64\%) cases of hypoglycemia by chart review. Diabetes with other specified manifestations (250.8), often excluded in prior hypoglycemia analyses, identified 83\% of hypoglycemia visits, and unspecified hypoglycemia (251.2) identified 13\% of hypoglycemia visits. The absence of any predetermined co-diagnosis codes improved the positive predictive value of code 250.8 from 62\% to 92\%, while excluding only 10 (2\%) true hypoglycemia visits. Although prior analyses included only the first-listed ICD-9 code, more than one-quarter of identified hypoglycemia visits were outside this primary diagnosis field. Overall, the proposed algorithm had 89\% positive predictive value (95\% confidence interval, 86-92) for detecting hypoglycemia visits. CONCLUSION: The proposed algorithm improves on prior strategies to identify hypoglycemia visits in administrative data sets and will enhance the ability to study the epidemiology and design interventions for this important complication of diabetes care.
This article was published in BMC Endocr Disord and referenced in Journal of Diabetes & Metabolism

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords