alexa Validation of volume kinetic analysis of glucose 2.5\% solution given by intravenous infusion.
Mathematics

Mathematics

Journal of Applied & Computational Mathematics

Author(s): Sjstrand F, Hahn RG

Abstract Share this page

Abstract BACKGROUND: The distribution and elimination of glucose solutions can be analysed by means of a volume kinetic model, but the ability of the model to predict plasma dilution ('model linearity') has not been evaluated. METHODS: Six male volunteers received four separate infusions of glucose 2.5\%: 10 ml kg(-1) and 15 ml kg(-1) over 30 min, and 15 ml kg(-1) and 25 ml kg(-1 )over 60 min. The kinetic model was fitted to measurements of plasma glucose concentration and haemodilution. RESULTS: The mean volume of distribution for the glucose was 9.2 (SEM 0.4) litres while the infused fluid expanded a central body fluid space (V(1)) of 3.1 (0.3) litres. Increasing the amount of infused fluid, but not the infusion rate, resulted in a proportional increase in the area under the curve for plasma glucose and plasma dilution, the only confounder being glycosuria. The bias of computer simulation was slightly increased by rebound hypoglycaemia, which could occur with the highest infusion rates, but the accuracy was almost identical regardless of whether the kinetic parameters from all 24 experiments or from any of the subgroups were used. CONCLUSION: The volume kinetic model for glucose 2.5\% is linear and can therefore be used for computer simulation as long as marked glycosuria does not occur.
This article was published in Br J Anaesth and referenced in Journal of Applied & Computational Mathematics

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords